If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-26x+56=0
a = 1; b = -26; c = +56;
Δ = b2-4ac
Δ = -262-4·1·56
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{113}}{2*1}=\frac{26-2\sqrt{113}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{113}}{2*1}=\frac{26+2\sqrt{113}}{2} $
| 3x=-2X+20 | | 21/3x-7=25 | | 6x(2x+1)-(3x+1)x4x=10 | | (x-6/x-2)=1/5 | | 3.14=9x | | 210x+840/x=I | | 2z=14.64 | | 7x-20+2x+30=180 | | 12+3n–3=99 | | (6w*6w)=600 | | 90-9x+63=9x+9 | | y/0.5=10 | | 90=x+(x+44) | | 150=x+(x+96) | | 90=x+(x+42) | | (4x+3)/4-(x-2x-1/3)=x+1/3 | | (4+3x)x=175 | | (4+3x)x/2=175 | | (4x+4)x/2=24 | | (2x-3)x/2=52 | | (2x-3)x-52=0 | | (24-4x)=4 | | (4x-4)x/2=112 | | (3x-6)x-105=0 | | -16x^2+12.8x+3.2=0 | | (5+4x)x-369=0 | | 5x²+7=18 | | -16x^2+16x+23=0 | | Y=6x+9000 | | m+2.67=3.67 | | 3x-34=x+22 | | 2y2+4y-70=0 |